Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
J Chem Inf Model ; 63(7): 2158-2169, 2023 04 10.
Article in English | MEDLINE | ID: covidwho-2260188

ABSTRACT

The rapid global spread of the SARS-CoV-2 virus facilitated the development of novel direct-acting antiviral agents (DAAs). The papain-like protease (PLpro) has been proposed as one of the major SARS-CoV-2 targets for DAAs due to its dual role in processing viral proteins and facilitating the host's immune suppression. This dual role makes identifying small molecules that can effectively neutralize SARS-CoV-2 PLpro activity a high-priority task. However, PLpro drug discovery faces a significant challenge due to the high mobility and induced-fit effects in the protease's active site. Herein, we virtually screened the ZINC20 database with Deep Docking (DD) to identify prospective noncovalent PLpro binders and combined ultra-large consensus docking with two pharmacophore (ph4)-filtering strategies. The analysis of active compounds revealed their somewhat-limited diversity, likely attributed to the induced-fit nature of PLpro's active site in the crystal structures, and therefore, the use of rigid docking protocols poses inherited limitations. The top hits were assessed against recombinant viral proteins and live viruses, demonstrating desirable inhibitory activities. The best compound VPC-300195 (IC50: 15 µM) ranks among the top noncovalent PLpro inhibitors discovered through in silico methodologies. In the search for novel SARS-CoV-2 PLpro-specific chemotypes, the identified inhibitors could serve as diverse templates for the development of effective noncovalent PLpro inhibitors.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Models, Molecular , Prospective Studies , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Proteins/chemistry , Peptide Hydrolases
2.
J Mol Graph Model ; 118: 108345, 2023 01.
Article in English | MEDLINE | ID: covidwho-2239079

ABSTRACT

Human norovirus (HuNoV) causes acute viral gastroenteritis in all age groups, and dehydration and severe diarrhea in the elderly. The World Health Organization reports ∼1.45 million deaths from acute gastroenteritis annually in the world. Rupintrivir, an inhibitory medicine against the human rhinovirus C3 protease, has been reported to inhibit HuNoV 3C protease. However, several HuNoV 3C protease mutations have been revealed to reduce the susceptibility of HuNoV to rupintrivir. The structural details behind rupintrivir-resistance of these single-point mutations (A105V and I109V) are not still clear. Hence, in this study, a combination of computational techniques were used to determine the rupintrivir-resistance mechanism and to propose an inhibitor against wild-type and mutant HuNoV 3C protease through structure-based virtual screening. Dynamic structural results indicated the unstable binding of rupintrivir at the cleft binding site of the wild-type and mutant 3C proteases, leading to its detachment. Our findings presented that the domain II of the HuNoV 3C protease had a critical role in binding of inhibitory molecules. Binding energy computations, steered molecular dynamics and umbrella sampling simulations confirmed that amentoflavone, the novel suggested inhibitor, strongly binds to the cleft site of all protease models and has a good structural stability in the complex system along the molecular dynamic simulations. Our in silico study proposed the selected compound as a potential inhibitor against the HuNoV 3C protease. However, additional experimental and clinical studies are required to corroborate the therapeutic efficacy of the compound.


Subject(s)
Antiviral Agents , Norovirus , Protease Inhibitors , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Gastroenteritis/drug therapy , Gastroenteritis/virology , Norovirus/drug effects , Norovirus/metabolism , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry
3.
Braz J Biol ; 84: e250667, 2022.
Article in English | MEDLINE | ID: covidwho-2231828

ABSTRACT

Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Nigella sativa , Benzoquinones , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Nigella sativa/metabolism , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/metabolism
4.
Structure ; 28(8): 874-878, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-2132441

ABSTRACT

During global pandemics, the spread of information needs to be faster than the spread of the virus in order to ensure the health and safety of human populations worldwide. In our current crisis, the demand for SARS-CoV-2 drugs and vaccines highlights the importance of biological targets and their three-dimensional shape. In particular, structural biology as a field was poised to quickly respond to crises due to previous experience and expertise and because of its early adoption of open access practices.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Viral Proteins/chemistry , COVID-19 , Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases/chemistry , Databases, Protein , Humans , Models, Molecular , Molecular Biology , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry
6.
Viruses ; 14(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116033

ABSTRACT

The recent outbreak of Monkeypox virus requires the development of a vaccine specifically directed against this virus as quickly as possible. We propose here a new strategy based on a two-step analysis combining (i) the search for binding domains of viral proteins to gangliosides present in lipid rafts of host cells, and (ii) B epitope predictions. Based on previous studies of HIV and SARS-CoV-2 proteins, we show that the Monkeypox virus cell surface-binding protein E8L possesses a ganglioside-binding motif consisting of several subsites forming a ring structure. The binding of the E8L protein to a cluster of gangliosides GM1 mimicking a lipid raft domain is driven by both shape and electrostatic surface potential complementarities. An induced-fit mechanism unmasks selected amino acid side chains of the motif without significantly affecting the secondary structure of the protein. The ganglioside-binding motif overlaps three potential linear B epitopes that are well exposed on the unbound E8L surface that faces the host cell membrane. This situation is ideal for generating neutralizing antibodies. We thus suggest using these three sequences derived from the E8L protein as immunogens in a vaccine formulation (recombinant protein, synthetic peptides or genetically based) specific for Monkeypox virus. This lipid raft/ganglioside-based strategy could be used for developing therapeutic and vaccine responses to future virus outbreaks, in parallel to existing solutions.


Subject(s)
Monkeypox virus , Viral Proteins , Epitopes/chemistry , Gangliosides , Monkeypox , Monkeypox virus/chemistry , Viral Proteins/chemistry
7.
Biomolecules ; 12(11)2022 11 11.
Article in English | MEDLINE | ID: covidwho-2109924

ABSTRACT

Gold compounds have a long tradition in medicine and offer many opportunities for new therapeutic applications. Herein, we evaluated the lead compound Auranofin and five related gold(I) complexes as possible inhibitors of SARS-CoV-2 Main Protease (SARS-CoV-2 Mpro), a validated drug target for the COVID-19 disease. The investigational panel of gold compounds included Auranofin; three halido analogues, i.e., Au(PEt3)Cl, Au(PEt3)Br, and Au(PEt3)I; and two gold carbene complexes, i.e., Au(NHC)Cl and [Au(NHC)2]PF6. Notably, all these gold compounds, with the only exception of [Au(NHC)2]PF6, turned out to be potent inhibitors of the catalytic activity of SARS-CoV-2 Mpro: the measured Ki values were in the range 2.1-0.4 µM. The reactions of the various gold compounds with SARS-CoV-2 Mpro were subsequently investigated through electrospray ionization (ESI) mass spectrometry (MS) upon a careful optimization of the experimental conditions; the ESI MS spectra provided clear evidence for the formation of tight metallodrug-protein adducts and for the coordination of well defined gold-containing fragments to the SARS-CoV-2 Mpro, again with the only exception of [Au(NHC)2]PF6, The metal-protein stoichiometry was unambiguously determined for the resulting species. The crystal structures of the metallodrug- Mpro adducts were solved in the case of Au(PEt3)Br and Au(NHC)Cl. These crystal structures show that gold coordination occurs at the level of catalytic Cys 145 in the case of Au(NHC)Cl and at the level of both Cys 145 and Cys 156 for Au(PEt3)Br. Tight coordination of gold atoms to functionally relevant cysteine residues is believed to represent the true molecular basis of strong enzyme inhibition.


Subject(s)
Auranofin , COVID-19 Drug Treatment , Humans , Auranofin/pharmacology , Viral Proteins/chemistry , SARS-CoV-2 , Gold Compounds/pharmacology , Cysteine , Gold/pharmacology
8.
Nature ; 610(7931): 381-388, 2022 10.
Article in English | MEDLINE | ID: covidwho-2050416

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Subject(s)
COVID-19 , Epigenesis, Genetic , Histones , Host Microbial Interactions , Molecular Mimicry , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Epigenome/genetics , Histones/chemistry , Histones/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Pak J Biol Sci ; 25(9): 867-874, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2030108

ABSTRACT

<b>Background and Objective:</b> Lemongrass (<i>Cymbopogon citratus</i>) and turmeric (<i>Curcuma longa</i>) are widely used by the community for traditional medicinal spices and cooking spices. In the era of the COVID-19 pandemic, people use lemongrass and turmeric to increase immunity and protect the body from infection with the SARS-CoV-2 virus. However, the antiviral mechanisms have not been studied much. This study aims to predict the bioactivity of the phytosterol compounds of lemongrass and turmeric for COVID-19 therapy through inhibition of 3C-like protease (3CLPro) <i>in silico</i>. <b>Materials and Methods:</b> The 3CLPro protein 3D structure was downloaded from the PDB database with the access code 2ZU2 and the phytosterol compounds of lemongrass and turmeric were taken from PubChem. A total of 59 total phytosterol compounds from turmeric and lemongrass were screened for their bioactivity as an antiviral by using online PASS. Compounds with a high activating potential (Pa) were interacted with 3CLPro protein with the PyRx program and analyzed by Discovery Studio version 19.0 and LigPlus. <b>Results:</b> A total of 22 total phytosterol compounds were identified as potential antiviral agents. Based on the Pa value, 15 phytosterol compounds have the potential to act as inhibitor agents for 3CLPro SARS-CoV-2. The phytosterol compounds of lemongrass and turmeric bind to the 3CLPro protein in the N-finger domain region and the A and B domain inhibitors connect residues of the 3CLPro protein. The phytosterols of lemongrass and turmeric show a low binding affinity with 3CLPro SARS-CoV-2, indicating a strong interaction between ligand and protein. The inhibition of phytosterols against 3CLPro protein can be used as a basis for determining candidates for COVID-19 therapeutic agents. <b>Conclusion:</b> The phytosterol compounds contained in lemongrass and turmeric have the potential to act as 3CLPro inhibitors. Further studies both <i>in vitro</i> and <i>in vivo</i> need to be done to prove the inhibitory potential of phytosterol compounds.


Subject(s)
COVID-19 Drug Treatment , Cymbopogon , Phytosterols , Antiviral Agents/pharmacology , Curcuma , Humans , Pandemics , Peptide Hydrolases , Phytosterols/pharmacology , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/metabolism
10.
Nat Commun ; 13(1): 5196, 2022 09 03.
Article in English | MEDLINE | ID: covidwho-2008279

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes COVID-19, produces polyproteins 1a and 1ab that contain, respectively, 11 or 16 non-structural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for viral assembly and maturation. Using C-terminally substituted Mpro chimeras, we have determined X-ray crystallographic structures of Mpro in complex with 10 of its 11 viral cleavage sites, bound at full occupancy intermolecularly in trans, within the active site of either the native enzyme and/or a catalytic mutant (C145A). Capture of both acyl-enzyme intermediate and product-like complex forms of a P2(Leu) substrate in the native active site provides direct comparative characterization of these mechanistic steps as well as further informs the basis for enhanced product release of Mpro's own unique C-terminal P2(Phe) cleavage site to prevent autoinhibition. We characterize the underlying noncovalent interactions governing binding and specificity for this diverse set of substrates, showing remarkable plasticity for subsites beyond the anchoring P1(Gln)-P2(Leu/Val/Phe), representing together a near complete analysis of a multiprocessing viral protease. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for antiviral therapeutic development.


Subject(s)
COVID-19 , Coronavirus 3C Proteases/metabolism , Polyproteins , SARS-CoV-2/physiology , Cysteine Endopeptidases/metabolism , Humans , Peptide Hydrolases , Polyproteins/chemistry , Viral Proteins/chemistry , X-Rays
11.
Chembiochem ; 23(19): e202200327, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-1999838

ABSTRACT

Emerging variants of SARS-CoV-2 and potential novel epidemic coronaviruses underline the importance of investigating various viral proteins as potential drug targets. The papain-like protease of coronaviruses has been less explored than other viral proteins; however, its substantive role in viral replication and impact on the host immune response make it a suitable target to study. This review article focuses on the structure and function of the papain-like protease (PLpro ) of SARS-CoV-2, including variants of concern, and compares it to those of other coronaviruses, such as SARS-CoV-1 and MERS-CoV. The protease's recognition motif is mirrored in ubiquitin and ISG15, which are involved in the antiviral immune response. Inhibitors, including GRL0617 derivatives, and their prospects as potential future antiviral agents are also discussed.


Subject(s)
COVID-19 Drug Treatment , Papain , Aniline Compounds , Antiviral Agents/chemistry , Benzamides , Coronavirus Papain-Like Proteases , Humans , Naphthalenes , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2 , Ubiquitin/metabolism , Viral Proteins/chemistry
12.
J Virol ; 96(17): e0074122, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992937

ABSTRACT

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Subject(s)
Coronavirus Infections , Host Microbial Interactions , Middle East Respiratory Syndrome Coronavirus , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitination , Viral Proteins , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/immunology , Humans , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Targeted Therapy , Proteasome Endopeptidase Complex/metabolism , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
13.
Nat Commun ; 13(1): 4782, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1991594

ABSTRACT

The emergence of heavily mutated SARS-CoV-2 variants of concern (VOCs) place the international community on high alert. In addition to numerous mutations that map in the spike protein of VOCs, expression of the viral accessory proteins ORF6 and ORF9b also elevate; both are potent interferon antagonists. Here, we present the crystal structures of Rae1-Nup98 in complex with the C-terminal tails (CTT) of SARS-CoV-2 and SARS-CoV ORF6 to 2.85 Å and 2.39 Å resolution, respectively. An invariant methionine (M) 58 residue of ORF6 CTT extends its side chain into a hydrophobic cavity in the Rae1 mRNA binding groove, resembling a bolt-fitting-hole; acidic residues flanking M58 form salt-bridges with Rae1. Our mutagenesis studies identify key residues of ORF6 important for its interaction with Rae1-Nup98 in vitro and in cells, of which M58 is irreplaceable. Furthermore, we show that ORF6-mediated blockade of mRNA and STAT1 nucleocytoplasmic transport correlate with the binding affinity between ORF6 and Rae1-Nup98. Finally, binding of ORF6 to Rae1-Nup98 is linked to ORF6-induced interferon antagonism. Taken together, this study reveals the molecular basis for the antagonistic function of Sarbecovirus ORF6, and implies a strategy of using ORF6 CTT-derived peptides for immunosuppressive drug development.


Subject(s)
Active Transport, Cell Nucleus , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Viral Proteins , Interferons/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , Viral Proteins/chemistry
14.
Nature ; 609(7928): 793-800, 2022 09.
Article in English | MEDLINE | ID: covidwho-1984402

ABSTRACT

The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.


Subject(s)
RNA Caps , RNA, Viral , SARS-CoV-2 , Viral Proteins , Antiviral Agents , COVID-19/virology , Catalytic Domain , Guanosine Diphosphate/metabolism , Humans , Methyltransferases/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Protein Domains , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , COVID-19 Drug Treatment
15.
J Med Virol ; 93(11): 6116-6123, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349155

ABSTRACT

Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.


Subject(s)
Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/metabolism , Virus Diseases/immunology , Viruses/immunology , Animals , HIV/immunology , HIV/metabolism , HIV/pathogenicity , Hepacivirus/immunology , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Herpesviridae/immunology , Herpesviridae/metabolism , Herpesviridae/pathogenicity , Humans , Measles virus/immunology , Measles virus/metabolism , Measles virus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/chemistry , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
16.
Neurotox Res ; 40(5): 1553-1569, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966190

ABSTRACT

Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein-ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer's disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.


Subject(s)
COVID-19 Drug Treatment , Curcumin , Glycyrrhizic Acid , Humans , Ligands , Molecular Docking Simulation , Pandemics , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/metabolism
17.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: covidwho-1934078

ABSTRACT

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) initiates the cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1ß in human lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10 expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3 inflammasome inhibitor and the NLRP3-/- mouse model. This study demonstrated that SARS-CoV SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation, providing the potential therapeutic targets for developing the antiviral agents.


Subject(s)
Chemokine CXCL10/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Proteins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Chemokine CXCL10/genetics , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pneumonia/pathology , Pneumonia/virology , Promoter Regions, Genetic , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Up-Regulation , Viral Proteins/chemistry , Viral Proteins/genetics
18.
Sci Rep ; 12(1): 10896, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908284

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pneumonia-like disease with a pattern of acute respiratory symptoms, currently remains a significant public health concern causing tremendous human suffering. Although several approved vaccines exist, vaccine hesitancy, limited vaccine availability, high rate of viral mutation, and the absence of approved drugs account for the persistence of SARS-CoV-2 infections. The investigation of possibly repurposing of phytochemical compounds as therapeutic alternatives has gained momentum due to their reported affordability and minimal toxicity. This study investigated anti-viral phytochemical compounds from ethanolic leaf extracts of Spondias mombin L as potential inhibitor candidates against SARS-CoV-2. We identified Geraniin and 2-O-Caffeoyl-(+)-allohydroxycitric acid as potential SARS-CoV-2 inhibitor candidates targeting the SARS-CoV-2 RNA-dependent polymerase receptor-binding domain (RBD) of SARS-CoV-2 viral S-protein and the 3C-like main protease (3CLpro). Geraniin exhibited binding free energy (ΔGbind) of - 25.87 kcal/mol and - 21.74 kcal/mol towards SARS-CoV-2 RNA-dependent polymerase and receptor-binding domain (RBD) of SARS-CoV-2 viral S-protein respectively, whereas 2-O-Caffeoyl-(+)-allohydroxycitric acid exhibited a ΔGbind of - 32 kcal/mol towards 3CLpro. Molecular Dynamics simulations indicated a possible interference to the functioning of SARS-CoV-2 targets by the two identified inhibitors. However, further in vitro and in vivo evaluation of these potential SARS-CoV-2 therapeutic inhibitor candidates is needed.


Subject(s)
Anacardiaceae , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Drug Repositioning , Humans , Phytochemicals/pharmacology , RNA, Viral , SARS-CoV-2 , Viral Proteins/chemistry
19.
Adv Protein Chem Struct Biol ; 131: 261-276, 2022.
Article in English | MEDLINE | ID: covidwho-1866754

ABSTRACT

Numerous viruses have evolved mechanisms to inhibit or alter the host cell's apoptotic response as part of their coevolution with their hosts. The analysis of virus-host protein interactions require an in-depth understanding of both the viral and host protein structures and repertoires, as well as evolutionary mechanisms and pertinent biological facts. Throughout the course of a viral infection, there is constant battle for binding between virus and cellular proteins. Exogenous interfaces facilitating viral-host interactions are well known for constantly targeting and suppressing endogenous interfaces mediating intraspecific interactions, such as viral-viral and host-host connections. In these interactions, the protein-protein interactions (PPIs), are mostly shown as networks (protein interaction networks, PINs), with proteins represented as nodes and their interactions represented as edges. Host proteins with a higher degree of connectivity are more likely to interact with viral proteins. Due to technical advancements, three-dimensional interactions may now be visualized computationally utilizing molecular modeling and cryo-EM approaches. The uniqueness of viral domain repertoires, their evolution, and their activities during viral infection make viruses fascinating models for research. This chapter aims to provide readers a complete picture of the viral hijacking mechanism in protein-protein interactions.


Subject(s)
Host Microbial Interactions , Viral Proteins , Humans , Viral Proteins/chemistry
20.
Commun Biol ; 5(1): 391, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1815611

ABSTRACT

Protease inhibitors are among the most powerful antiviral drugs. However, for SARS-CoV-2 only a small number of protease inhibitors have been identified thus far and there is still a great need for assays that efficiently report protease activity and inhibition in living cells. Here, we engineer a safe VSV-based system to report both gain- and loss-of-function of coronavirus main protease (Mpro/3CLpro/Nsp5) activity in living cells. We use SARS-CoV-2 3CLpro in this system to confirm susceptibility to known inhibitors (boceprevir, GC376, PF-00835231, and PF-07321332/nirmatrelvir) and reevaluate other reported inhibitors (baicalein, ebselen, carmofur, ethacridine, ivermectin, masitinib, darunavir, and atazanavir). Moreover, we show that the system can be adapted to report both the function and the chemical inhibition of proteases from different coronavirus species as well as from distantly related viruses. Together with the fact that live cell assays also reflect compound permeability and toxicity, we anticipate that this system will be useful for both identification and optimization of additional coronavirus protease inhibitors.


Subject(s)
COVID-19 , Cysteine Endopeptidases , Humans , Indoles , Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Protease Inhibitors/pharmacology , Pyrrolidinones , SARS-CoV-2 , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL